

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

libPeConv

[image: _images/pqo6ob148pf5b352.svg]Build status [https://ci.appveyor.com/project/hasherezade/libpeconv]
[image: _images/55911b033cf145d38d6e38a0c005b686.svg]Codacy Badge [https://app.codacy.com/gh/hasherezade/libpeconv/dashboard?branch=master]
[image: _images/libpeconv.svg]Commit activity [https://github.com/hasherezade/libpeconv/commits]
[image: _images/master.svg]Last Commit [https://github.com/hasherezade/libpeconv/commits]

[image: _images/License-BSD%202--Clause-blue.svg]License [https://opensource.org/licenses/BSD-2-Clause]
[image: _images/Windows-0078D6.svg]Platform Badge [https://github.com/hasherezade/libpeconv]

A library to load and manipulate PE files.

Objectives

The goal of libPEConv was to create a “swiss army knife” for custom loading of PE files. It gathers various helper functions that you can quickly integrate in your own loader. For example: remapping sections, applying relocations, loading imports, parsing resources.

Not only it allows for loading PE files, but also for customizing of some steps, i.e. IAT hooking (by providing custom IAT resolvers), and functions redirection. Yet, it is NOT focused on inline hooking and should not be confused with libraries such as MS Detours or MinHook.

LibPeConv can be used for creating PE binders, as it allows to load a PE directly from the resource, and integrate it as if it was a local code.

As well it can help you in dumping PEs from the memory, and rebuilding their IATs.

Basic example

The simplest usecase: use libPeConv to manually load and run an EXE of you choice.

#include <Windows.h>
#include <iostream>

#include <peconv.h> // include libPeConv header

int main(int argc, char *argv[])
{
 if (argc < 2) {
 std::cout << "Args: <path to the exe>" << std::endl;
 return 0;
 }
 LPCSTR pe_path = argv[1];

 // manually load the PE file using libPeConv:
 size_t v_size = 0;
#ifdef LOAD_FROM_PATH
 //if the PE is dropped on the disk, you can load it from the file:
 BYTE* my_pe = peconv::load_pe_executable(pe_path, v_size);
#else
 size_t bufsize = 0;
 BYTE *buffer = peconv::load_file(pe_path, bufsize);

 // if the file is NOT dropped on the disk, you can load it directly from a memory buffer:
 BYTE* my_pe = peconv::load_pe_executable(buffer, bufsize, v_size);
#endif
 if (!my_pe) {
 return -1;
 }
	
 // if the loaded PE needs to access resources, you may need to connect it to the PEB:
 peconv::set_main_module_in_peb((HMODULE)my_pe);

 // load delayed imports (if present):
 const ULONGLONG load_base = (ULONGLONG)my_pe;
 peconv::load_delayed_imports(my_pe, load_base);

 // if needed, you can run TLS callbacks before the Entry Point:
 peconv::run_tls_callbacks(my_pe, v_size);
	
 //calculate the Entry Point of the manually loaded module
 DWORD ep_rva = peconv::get_entry_point_rva(my_pe);
 if (!ep_rva) {
 return -2;
 }
 ULONG_PTR ep_va = ep_rva + (ULONG_PTR) my_pe;
 //assuming that the payload is an EXE file (not DLL) this will be the simplest prototype of the main:
 int (*new_main)() = (int(*)())ep_va;

 //call the Entry Point of the manually loaded PE:
 return new_main();
}

See also: https://github.com/hasherezade/libpeconv_tpl/blob/master/project_template/main.cpp

Read more

	Wiki [https://github.com/hasherezade/libpeconv/wiki]

	Docs [https://hasherezade.github.io/libpeconv/]

	Examples [https://github.com/hasherezade/libpeconv/tree/master/tests]

	Tutorials [https://hshrzd.wordpress.com/tag/libpeconv/]

	Project template [https://github.com/hasherezade/libpeconv_project_template]

pe_unmapper

Small tool to convert beteween the PE alignments (raw and virtual).

Moved into a dedicated repository:

	https://github.com/hasherezade/pe_unmapper

Demo: RunPE

This is a demo project using libpeconv.

RunPE (aka Process Hollowing) is a well known technique allowing to injecting a new PE into a remote processes, imprersonating this process.

[image: https://blog.malwarebytes.com/wp-content/uploads/2018/08/hollowing1-1_.png]

The given implementation works for PE 32bit as well as 64bit.

Supported injections:

If the loader was built as 32 bit:

32 bit payload -> 32 bit target

If the loader was built as 64 bit:

64 bit payload -> 64 bit target
32 bit payload -> 32 bit target

How to use the app:

Supply 2 commandline arguments:

[payload_path] [target_path]

Payload is the PE to be executed impersonating the Target.

FlareOn2017 Challenge 6

Writeup

	Solving Flare-On 2017, Challenge 6 with libPeConv [https://hshrzd.wordpress.com/2017/12/01/hook-the-planet-solving-flareon4-challenge6-with-libpeconv/]

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

